Correction of aberration in holographic optical tweezers using a Shack-Hartmann sensor.
نویسندگان
چکیده
Optical aberration due to the nonflatness of spatial light modulators used in holographic optical tweezers significantly deteriorates the quality of the trap and may easily prevent stable trapping of particles. We use a Shack-Hartmann sensor to measure the distorted wavefront at the modulator plane; the conjugate of this wavefront is then added to the holograms written into the display to counteract its own curvature and thus compensate the optical aberration of the system. For a Holoeye LC-R 2500 reflective device, flatness is improved from 0.8λ to λ/16 (λ=532 nm), leading to a diffraction-limited spot at the focal plane of the microscope objective, which makes stable trapping possible. This process could be fully automated in a closed-loop configuration and would eventually allow other sources of aberration in the optical setup to be corrected for.
منابع مشابه
Advanced Methods for Improving the Efficiency of a Shack Hartmann Wavefront Sensor
Wavefront sensor is a device that measures the optical wavefront aberration. The Shack Hartmann wavefront sensor (SHWS), named after Johannes Franz Hartmann and Roland Shack, is one of the most often used optical wavefront sensor. It is made up of an array of microlenses (all having the same focal length and aperture size) and a detector placed at the focal plane of these microlenses. Johannes ...
متن کاملMeasurement of wave-front aberration in soft contact lenses by use of a Shack-Hartmann wave-front sensor.
Lower- and higher-order wave-front aberrations of soft contact lenses were accurately measured with a Shack-Hartmann wave-front sensor. The soft contact lenses were placed in a wet cell filled with lens solution to prevent surface deformation and desiccation during measurements. Aberration measurements of conventional toric and multifocal soft contact lenses and a customized soft contact lens h...
متن کاملEvaluating the effect of transmissive optic thermal lensing on laser beam quality with a shack-hartmann wave-front sensor.
We examine wave-front distortion caused by high-power lasers on transmissive optics using a Shack-Hartmann wave-front sensor. The coupling coefficient for a thermally aberrated Gaussian beam to the TEM(00) mode of a cavity was determined as a function of magnitude of the thermally induced aberration. One wave of thermally induced phase aberration between the Gaussian intensity peak and the 1/e(...
متن کاملThree-dimensional surface profiling and optical characterization of liquid microlens using a Shack-Hartmann wave front sensor.
We demonstrate three-dimensional (3D) surface profiling of the water-oil interface in a tunable liquid microlens using a Shack-Hartmann wave front sensor. The principles and the optical setup for achieving 3D surface measurements are presented and a hydrogel-actuated liquid lens was measured at different focal lengths. The 3D surface profiles are then used to study the optical properties of the...
متن کاملMotivation for a coherence gated wavefront sensor (CG)-SH/WFS
Shack–Hartmann wavefront sensors (SH-WFS) have little sensitivity in depth and hence are unsuitable for microscopy and are limited for retinal imaging. We demonstrate the first direct Shack–Hartmann measurement of wavefront originating from a multiple-layer target, in the presence of significant stray reflections that render a standard SH-WFS inoperable. A coherence-gate SH-WFS is implemented b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied optics
دوره 48 6 شماره
صفحات -
تاریخ انتشار 2009